(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
fib(s(s(x))) →+ +(fib(s(x)), fib(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
The rewrite sequence
fib(s(s(x))) →+ +(fib(s(x)), fib(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(x))) → +'(fib(s(x)), fib(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(x))) → +'(fib(s(x)), fib(x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fib
(8) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
fib
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fib(
gen_0':s:+'2_0(
+(
2,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
fib(gen_0':s:+'2_0(+(2, 0)))
Induction Step:
fib(gen_0':s:+'2_0(+(2, +(n4_0, 1)))) →RΩ(1)
+'(fib(s(gen_0':s:+'2_0(+(1, n4_0)))), fib(gen_0':s:+'2_0(+(1, n4_0)))) →IH
+'(*3_0, fib(gen_0':s:+'2_0(+(1, n4_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
x))) →
+'(
fib(
s(
x)),
fib(
x))
Types:
fib :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fib(gen_0':s:+'2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)